Nuprl Definition : eff-unique-path

eff-unique-path(T;A) ==
  ∀g,h:ℕ ⟶ T. ∀n:ℕ.  ((¬((g n) (h n) ∈ T))  (∃m:ℕ((A map(g;upto(m))) ∧ (A map(h;upto(m)))))))



Definitions occuring in Statement :  upto: upto(n) map: map(f;as) nat: all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] equal: t ∈ T
Definitions occuring in definition :  function: x:A ⟶ B[x] all: x:A. B[x] implies:  Q equal: t ∈ T exists: x:A. B[x] nat: not: ¬A and: P ∧ Q apply: a map: map(f;as) upto: upto(n)
FDL editor aliases :  eff-unique-path

Latex:
eff-unique-path(T;A)  ==
    \mforall{}g,h:\mBbbN{}  {}\mrightarrow{}  T.  \mforall{}n:\mBbbN{}.    ((\mneg{}((g  n)  =  (h  n)))  {}\mRightarrow{}  (\mexists{}m:\mBbbN{}.  (\mneg{}((A  map(g;upto(m)))  \mwedge{}  (A  map(h;upto(m)))))))



Date html generated: 2016_05_14-PM-04_09_53
Last ObjectModification: 2015_09_22-PM-06_02_18

Theory : fan-theorem


Home Index