Nuprl Lemma : infinite-tree_wf

A:(𝔹 List) ⟶ ℙ(infinite-tree(A) ∈ ℙ)


Proof




Definitions occuring in Statement :  infinite-tree: infinite-tree(A) list: List bool: 𝔹 prop: all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T infinite-tree: infinite-tree(A) prop: and: P ∧ Q uall: [x:A]. B[x] so_lambda: λ2x.t[x] implies:  Q subtype_rel: A ⊆B so_apply: x[s] nat: exists: x:A. B[x]
Lemmas referenced :  all_wf list_wf bool_wf iseg_wf nat_wf exists_wf equal_wf length_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule productEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality because_Cache functionEquality hypothesisEquality applyEquality functionExtensionality universeEquality intEquality setElimination rename cumulativity

Latex:
\mforall{}A:(\mBbbB{}  List)  {}\mrightarrow{}  \mBbbP{}.  (infinite-tree(A)  \mmember{}  \mBbbP{})



Date html generated: 2017_04_17-AM-09_39_03
Last ObjectModification: 2017_02_27-PM-05_35_06

Theory : fan-theorem


Home Index