Nuprl Lemma : infinite-tree_wf
∀A:(𝔹 List) ⟶ ℙ. (infinite-tree(A) ∈ ℙ)
Proof
Definitions occuring in Statement : 
infinite-tree: infinite-tree(A)
, 
list: T List
, 
bool: 𝔹
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
infinite-tree: infinite-tree(A)
, 
prop: ℙ
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
nat: ℕ
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
all_wf, 
list_wf, 
bool_wf, 
iseg_wf, 
nat_wf, 
exists_wf, 
equal_wf, 
length_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
productEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
because_Cache, 
functionEquality, 
hypothesisEquality, 
applyEquality, 
functionExtensionality, 
universeEquality, 
intEquality, 
setElimination, 
rename, 
cumulativity
Latex:
\mforall{}A:(\mBbbB{}  List)  {}\mrightarrow{}  \mBbbP{}.  (infinite-tree(A)  \mmember{}  \mBbbP{})
Date html generated:
2017_04_17-AM-09_39_03
Last ObjectModification:
2017_02_27-PM-05_35_06
Theory : fan-theorem
Home
Index