Nuprl Lemma : nary-rel_wf

[T:Type]. ∀[n:ℕ].  (n-aryRel(T) ∈ 𝕌')


Proof




Definitions occuring in Statement :  nary-rel: n-aryRel(T) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nary-rel: n-aryRel(T) nat: prop:
Lemmas referenced :  int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule functionEquality cumulativity lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis universeEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].    (n-aryRel(T)  \mmember{}  \mBbbU{}')



Date html generated: 2016_05_14-PM-04_07_17
Last ObjectModification: 2015_12_26-PM-07_55_08

Theory : fan-theorem


Home Index