Nuprl Lemma : predicate-and_wf
∀[T,S:Type]. ∀[A:T ⟶ ℙ]. ∀[B:S ⟶ ℙ].  (predicate-and(A;B) ∈ (T × S) ⟶ ℙ)
Proof
Definitions occuring in Statement : 
predicate-and: predicate-and(A;B)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
predicate-and: predicate-and(A;B)
, 
prop: ℙ
Lemmas referenced : 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
spreadEquality, 
hypothesisEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesis, 
productEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[T,S:Type].  \mforall{}[A:T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[B:S  {}\mrightarrow{}  \mBbbP{}].    (predicate-and(A;B)  \mmember{}  (T  \mtimes{}  S)  {}\mrightarrow{}  \mBbbP{})
Date html generated:
2016_05_14-PM-04_08_59
Last ObjectModification:
2015_12_26-PM-07_54_48
Theory : fan-theorem
Home
Index