Nuprl Lemma : predicate-not_wf
∀[T:Type]. ∀[A:T ⟶ Type].  (¬(A) ∈ T ⟶ ℙ)
Proof
Definitions occuring in Statement : 
predicate-not: ¬(A)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
predicate-not: ¬(A)
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
Lemmas referenced : 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality, 
isect_memberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[A:T  {}\mrightarrow{}  Type].    (\mneg{}(A)  \mmember{}  T  {}\mrightarrow{}  \mBbbP{})
Date html generated:
2016_05_14-PM-04_08_54
Last ObjectModification:
2015_12_26-PM-07_54_51
Theory : fan-theorem
Home
Index