Nuprl Lemma : predicate-not_wf

[T:Type]. ∀[A:T ⟶ Type].  (A) ∈ T ⟶ ℙ)


Proof




Definitions occuring in Statement :  predicate-not: ¬(A) uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T predicate-not: ¬(A) subtype_rel: A ⊆B prop:
Lemmas referenced :  not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality hypothesis because_Cache axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality isect_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[A:T  {}\mrightarrow{}  Type].    (\mneg{}(A)  \mmember{}  T  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2016_05_14-PM-04_08_54
Last ObjectModification: 2015_12_26-PM-07_54_51

Theory : fan-theorem


Home Index