Nuprl Lemma : tree-big_wf

[T:Type]. ∀[A:(T List) ⟶ ℙ]. ∀[n:ℕ].  (tree-big(T;A;n) ∈ ℙ)


Proof




Definitions occuring in Statement :  tree-big: tree-big(T;A;n) list: List nat: uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T tree-big: tree-big(T;A;n) so_lambda: λ2x.t[x] implies:  Q prop: nat: so_apply: x[s]
Lemmas referenced :  all_wf list_wf equal_wf length_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality functionEquality intEquality setElimination rename applyEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[A:(T  List)  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[n:\mBbbN{}].    (tree-big(T;A;n)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-PM-04_10_06
Last ObjectModification: 2015_12_26-PM-07_54_24

Theory : fan-theorem


Home Index