Nuprl Lemma : tree-big_wf
∀[T:Type]. ∀[A:(T List) ⟶ ℙ]. ∀[n:ℕ].  (tree-big(T;A;n) ∈ ℙ)
Proof
Definitions occuring in Statement : 
tree-big: tree-big(T;A;n)
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
tree-big: tree-big(T;A;n)
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
nat: ℕ
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
list_wf, 
equal_wf, 
length_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
functionEquality, 
intEquality, 
setElimination, 
rename, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
cumulativity, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[A:(T  List)  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[n:\mBbbN{}].    (tree-big(T;A;n)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_14-PM-04_10_06
Last ObjectModification:
2015_12_26-PM-07_54_24
Theory : fan-theorem
Home
Index