Nuprl Definition : unbounded-list-predicate

Unbounded(A) ==  ∀n:ℕ. ∃as:T List. ((||as|| n ∈ ℤ) ∧ (A as))



Definitions occuring in Statement :  length: ||as|| list: List nat: all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q apply: a int: equal: t ∈ T
Definitions occuring in definition :  all: x:A. B[x] nat: exists: x:A. B[x] list: List and: P ∧ Q equal: t ∈ T int: length: ||as|| apply: a
FDL editor aliases :  unbounded-list-predicate

Latex:
Unbounded(A)  ==    \mforall{}n:\mBbbN{}.  \mexists{}as:T  List.  ((||as||  =  n)  \mwedge{}  (A  as))



Date html generated: 2016_05_14-PM-04_10_21
Last ObjectModification: 2015_09_22-PM-06_02_20

Theory : fan-theorem


Home Index