Nuprl Definition : unsquashed-WCP

unsquashed-WCP ==
  ∀F:(ℕ ⟶ ℕ) ⟶ ℕ. ∃M:(ℕ ⟶ ℕ) ⟶ ℕ. ∀a,b:ℕ ⟶ ℕ.  ((∀i:ℕa. ((a i) (b i) ∈ ℕ))  ((F a) (F b) ∈ ℕ))



Definitions occuring in Statement :  int_seg: {i..j-} nat: all: x:A. B[x] exists: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions occuring in definition :  exists: x:A. B[x] function: x:A ⟶ B[x] implies:  Q all: x:A. B[x] int_seg: {i..j-} natural_number: $n equal: t ∈ T nat: apply: a
FDL editor aliases :  unsquashed-WCP

Latex:
unsquashed-WCP  ==
    \mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}.  \mexists{}M:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}.  \mforall{}a,b:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}i:\mBbbN{}M  a.  ((a  i)  =  (b  i)))  {}\mRightarrow{}  ((F  a)  =  (F  b)))



Date html generated: 2016_05_14-PM-04_14_52
Last ObjectModification: 2015_09_22-PM-06_02_26

Theory : fan-theorem


Home Index