Nuprl Lemma : upwd-closure_wf

[T:Type]. ∀[A:(T List) ⟶ ℙ].  (upwd-closure(T;A) ∈ (T List) ⟶ ℙ)


Proof




Definitions occuring in Statement :  upwd-closure: upwd-closure(T;A) list: List uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T upwd-closure: upwd-closure(T;A) so_lambda: λ2x.t[x] so_apply: x[s] prop:
Lemmas referenced :  exists_wf list_wf and_wf iseg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[A:(T  List)  {}\mrightarrow{}  \mBbbP{}].    (upwd-closure(T;A)  \mmember{}  (T  List)  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2016_05_14-PM-04_10_01
Last ObjectModification: 2015_12_26-PM-07_54_27

Theory : fan-theorem


Home Index