Nuprl Definition : wkl!
WKL! ==
  ∀A:{A:(𝔹 List) ⟶ ℙ| infinite-tree(A)} . ((∀as:𝔹 List. Dec(A as)) 
⇒ eff-unique(A) 
⇒ (∃f:{ℕ ⟶ 𝔹| is-path(A;f)}))
Definitions occuring in Statement : 
infinite-tree: infinite-tree(A)
, 
eff-unique: eff-unique(A)
, 
is-path: is-path(A;f)
, 
list: T List
, 
nat: ℕ
, 
bool: 𝔹
, 
decidable: Dec(P)
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:{A| B[x]}
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
Definitions occuring in definition : 
set: {x:A| B[x]} 
, 
prop: ℙ
, 
infinite-tree: infinite-tree(A)
, 
all: ∀x:A. B[x]
, 
list: T List
, 
decidable: Dec(P)
, 
apply: f a
, 
implies: P 
⇒ Q
, 
eff-unique: eff-unique(A)
, 
sq_exists: ∃x:{A| B[x]}
, 
function: x:A ⟶ B[x]
, 
nat: ℕ
, 
bool: 𝔹
, 
is-path: is-path(A;f)
FDL editor aliases : 
wkl!
Latex:
WKL!  ==
    \mforall{}A:\{A:(\mBbbB{}  List)  {}\mrightarrow{}  \mBbbP{}|  infinite-tree(A)\} 
        ((\mforall{}as:\mBbbB{}  List.  Dec(A  as))  {}\mRightarrow{}  eff-unique(A)  {}\mRightarrow{}  (\mexists{}f:\{\mBbbN{}  {}\mrightarrow{}  \mBbbB{}|  is-path(A;f)\}))
Date html generated:
2016_05_14-PM-04_12_41
Last ObjectModification:
2015_09_22-PM-06_02_24
Theory : fan-theorem
Home
Index