Nuprl Definition : wkl!

WKL! ==
  ∀A:{A:(𝔹 List) ⟶ ℙinfinite-tree(A)} ((∀as:𝔹 List. Dec(A as))  eff-unique(A)  (∃f:{ℕ ⟶ 𝔹is-path(A;f)}))



Definitions occuring in Statement :  infinite-tree: infinite-tree(A) eff-unique: eff-unique(A) is-path: is-path(A;f) list: List nat: bool: 𝔹 decidable: Dec(P) prop: all: x:A. B[x] sq_exists: x:{A| B[x]} implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x]
Definitions occuring in definition :  set: {x:A| B[x]}  prop: infinite-tree: infinite-tree(A) all: x:A. B[x] list: List decidable: Dec(P) apply: a implies:  Q eff-unique: eff-unique(A) sq_exists: x:{A| B[x]} function: x:A ⟶ B[x] nat: bool: 𝔹 is-path: is-path(A;f)
FDL editor aliases :  wkl!

Latex:
WKL!  ==
    \mforall{}A:\{A:(\mBbbB{}  List)  {}\mrightarrow{}  \mBbbP{}|  infinite-tree(A)\} 
        ((\mforall{}as:\mBbbB{}  List.  Dec(A  as))  {}\mRightarrow{}  eff-unique(A)  {}\mRightarrow{}  (\mexists{}f:\{\mBbbN{}  {}\mrightarrow{}  \mBbbB{}|  is-path(A;f)\}))



Date html generated: 2016_05_14-PM-04_12_41
Last ObjectModification: 2015_09_22-PM-06_02_24

Theory : fan-theorem


Home Index