Nuprl Lemma : empty-fset-ac-le
∀[eq,a:Top].  (fset-ac-le(eq;{};a) ~ True)
Proof
Definitions occuring in Statement : 
fset-ac-le: fset-ac-le(eq;ac1;ac2), 
empty-fset: {}, 
uall: ∀[x:A]. B[x], 
top: Top, 
true: True, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
fset-ac-le: fset-ac-le(eq;ac1;ac2), 
fset-all: fset-all(s;x.P[x]), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
fset-null: fset-null(s), 
null: null(as), 
fset-filter: {x ∈ s | P[x]}, 
filter: filter(P;l), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
true: True, 
empty-fset: {}, 
nil: [], 
it: ⋅, 
btrue: tt
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
sqequalAxiom, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[eq,a:Top].    (fset-ac-le(eq;\{\};a)  \msim{}  True)
Date html generated:
2016_05_14-PM-03_43_03
Last ObjectModification:
2016_01_07-PM-04_46_02
Theory : finite!sets
Home
Index