Nuprl Lemma : comb_for_fun_exp_wf
λT,n,f,z. f^n ∈ T:Type ⟶ n:ℕ ⟶ f:(T ⟶ T) ⟶ (↓True) ⟶ T ⟶ T
Proof
Definitions occuring in Statement : 
fun_exp: f^n
, 
nat: ℕ
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
fun_exp_wf, 
squash_wf, 
true_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
Error :universeIsType, 
Error :functionIsType, 
Error :inhabitedIsType, 
universeEquality
Latex:
\mlambda{}T,n,f,z.  f\^{}n  \mmember{}  T:Type  {}\mrightarrow{}  n:\mBbbN{}  {}\mrightarrow{}  f:(T  {}\mrightarrow{}  T)  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  T  {}\mrightarrow{}  T
Date html generated:
2019_06_20-PM-00_26_41
Last ObjectModification:
2018_09_28-PM-11_40_51
Theory : fun_1
Home
Index