Nuprl Lemma : comb_for_fun_exp_wf

λT,n,f,z. f^n ∈ T:Type ⟶ n:ℕ ⟶ f:(T ⟶ T) ⟶ (↓True) ⟶ T ⟶ T


Proof




Definitions occuring in Statement :  fun_exp: f^n nat: squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop:
Lemmas referenced :  fun_exp_wf squash_wf true_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaEquality_alt,  sqequalHypSubstitution imageElimination cut introduction extract_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry Error :universeIsType,  Error :functionIsType,  Error :inhabitedIsType,  universeEquality

Latex:
\mlambda{}T,n,f,z.  f\^{}n  \mmember{}  T:Type  {}\mrightarrow{}  n:\mBbbN{}  {}\mrightarrow{}  f:(T  {}\mrightarrow{}  T)  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  T  {}\mrightarrow{}  T



Date html generated: 2019_06_20-PM-00_26_41
Last ObjectModification: 2018_09_28-PM-11_40_51

Theory : fun_1


Home Index