Nuprl Lemma : comp_assoc

[A,B,C,D:Type]. ∀[f:A ⟶ B]. ∀[g:B ⟶ C]. ∀[h:C ⟶ D].  ((h (g f)) ((h g) f) ∈ (A ⟶ D))


Proof




Definitions occuring in Statement :  compose: g uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  compose: g member: t ∈ T uall: [x:A]. B[x]
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule lambdaEquality applyEquality hypothesisEquality Error :functionIsType,  Error :universeIsType,  functionEquality because_Cache Error :inhabitedIsType,  universeEquality Error :isect_memberFormation_alt,  introduction cut hypothesis sqequalHypSubstitution isect_memberEquality isectElimination thin axiomEquality

Latex:
\mforall{}[A,B,C,D:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[g:B  {}\mrightarrow{}  C].  \mforall{}[h:C  {}\mrightarrow{}  D].    ((h  o  (g  o  f))  =  ((h  o  g)  o  f))



Date html generated: 2019_06_20-PM-00_26_16
Last ObjectModification: 2018_09_26-AM-11_50_35

Theory : fun_1


Home Index