Nuprl Lemma : comp_assoc
∀[A,B,C,D:Type]. ∀[f:A ⟶ B]. ∀[g:B ⟶ C]. ∀[h:C ⟶ D].  ((h o (g o f)) = ((h o g) o f) ∈ (A ⟶ D))
Proof
Definitions occuring in Statement : 
compose: f o g
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
compose: f o g
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
Error :functionIsType, 
Error :universeIsType, 
functionEquality, 
because_Cache, 
Error :inhabitedIsType, 
universeEquality, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
axiomEquality
Latex:
\mforall{}[A,B,C,D:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[g:B  {}\mrightarrow{}  C].  \mforall{}[h:C  {}\mrightarrow{}  D].    ((h  o  (g  o  f))  =  ((h  o  g)  o  f))
Date html generated:
2019_06_20-PM-00_26_16
Last ObjectModification:
2018_09_26-AM-11_50_35
Theory : fun_1
Home
Index