Nuprl Lemma : comp_id_r

[A,B:Type]. ∀[f:A ⟶ B].  ((f Id{A}) f ∈ (A ⟶ B))


Proof




Definitions occuring in Statement :  compose: g tidentity: Id{T} uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  tidentity: Id{T} identity: Id compose: g uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  eta_conv
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  introduction cut hypothesis Error :functionIsType,  Error :universeIsType,  hypothesisEquality sqequalHypSubstitution isect_memberEquality isectElimination thin axiomEquality functionEquality Error :inhabitedIsType,  because_Cache universeEquality extract_by_obid

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].    ((f  o  Id\{A\})  =  f)



Date html generated: 2019_06_20-PM-00_26_18
Last ObjectModification: 2018_09_26-AM-11_50_36

Theory : fun_1


Home Index