Nuprl Lemma : comp_id_r
∀[A,B:Type]. ∀[f:A ⟶ B].  ((f o Id{A}) = f ∈ (A ⟶ B))
Proof
Definitions occuring in Statement : 
compose: f o g
, 
tidentity: Id{T}
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
tidentity: Id{T}
, 
identity: Id
, 
compose: f o g
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
eta_conv
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
Error :functionIsType, 
Error :universeIsType, 
hypothesisEquality, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
axiomEquality, 
functionEquality, 
Error :inhabitedIsType, 
because_Cache, 
universeEquality, 
extract_by_obid
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].    ((f  o  Id\{A\})  =  f)
Date html generated:
2019_06_20-PM-00_26_18
Last ObjectModification:
2018_09_26-AM-11_50_36
Theory : fun_1
Home
Index