Nuprl Lemma : compose-injections

[T:Type]. ∀[f,g:{f:T ⟶ T| Inj(T;T;f)} ].  (f g ∈ {f:T ⟶ T| Inj(T;T;f)} )


Proof




Definitions occuring in Statement :  inject: Inj(A;B;f) compose: g uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T inject: Inj(A;B;f) all: x:A. B[x] implies:  Q compose: g prop: so_lambda: λ2x.t[x] so_apply: x[s] guard: {T}
Lemmas referenced :  compose_wf equal_wf inject_wf set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename hypothesis lambdaFormation sqequalRule applyEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality lambdaEquality isect_memberEquality because_Cache universeEquality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[f,g:\{f:T  {}\mrightarrow{}  T|  Inj(T;T;f)\}  ].    (f  o  g  \mmember{}  \{f:T  {}\mrightarrow{}  T|  Inj(T;T;f)\}  )



Date html generated: 2016_05_13-PM-04_06_08
Last ObjectModification: 2015_12_26-AM-11_04_49

Theory : fun_1


Home Index