Nuprl Lemma : fun_exp_add1-sq2
∀[n:ℕ]. ∀[f,x:Top].  (f^n (f x) ~ f^n + 1 x)
Proof
Definitions occuring in Statement : 
fun_exp: f^n
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
apply: f a
, 
add: n + m
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
top: Top
, 
compose: f o g
Lemmas referenced : 
fun_exp_add-sq, 
false_wf, 
le_wf, 
top_wf, 
nat_wf, 
fun_exp1_lemma
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
lambdaFormation, 
because_Cache, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f,x:Top].    (f\^{}n  (f  x)  \msim{}  f\^{}n  +  1  x)
Date html generated:
2016_05_13-PM-04_07_10
Last ObjectModification:
2015_12_26-AM-11_04_11
Theory : fun_1
Home
Index