Nuprl Lemma : lifting-callbyvalueall-inr

[a,B:Top].  (let x ⟵ inr a  in B[x] let x ⟵ in B[inr ])


Proof




Definitions occuring in Statement :  callbyvalueall: callbyvalueall uall: [x:A]. B[x] top: Top so_apply: x[s] inr: inr  sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T callbyvalueall: callbyvalueall evalall: evalall(t) outr: outr(x) top: Top all: x:A. B[x] implies:  Q has-value: (a)↓ prop:
Lemmas referenced :  has-value_wf_base is-exception_wf equal_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule isect_memberEquality voidElimination voidEquality thin because_Cache lambdaFormation sqequalSqle sqleRule divergentSqle callbyvalueCallbyvalue sqequalHypSubstitution hypothesis callbyvalueReduce sqleReflexivity callbyvalueExceptionCases axiomSqleEquality extract_by_obid isectElimination baseApply closedConclusion baseClosed hypothesisEquality exceptionSqequal equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination sqequalAxiom

Latex:
\mforall{}[a,B:Top].    (let  x  \mleftarrow{}{}  inr  a    in  B[x]  \msim{}  let  x  \mleftarrow{}{}  a  in  B[inr  x  ])



Date html generated: 2017_04_14-AM-07_35_29
Last ObjectModification: 2017_02_27-PM-03_08_21

Theory : fun_1


Home Index