Nuprl Lemma : lifting-callbyvalueall-inr
∀[a,B:Top].  (let x ⟵ inr a  in B[x] ~ let x ⟵ a in B[inr x ])
Proof
Definitions occuring in Statement : 
callbyvalueall: callbyvalueall, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
inr: inr x 
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
, 
outr: outr(x)
, 
top: Top
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
, 
prop: ℙ
Lemmas referenced : 
has-value_wf_base, 
is-exception_wf, 
equal_wf, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
thin, 
because_Cache, 
lambdaFormation, 
sqequalSqle, 
sqleRule, 
divergentSqle, 
callbyvalueCallbyvalue, 
sqequalHypSubstitution, 
hypothesis, 
callbyvalueReduce, 
sqleReflexivity, 
callbyvalueExceptionCases, 
axiomSqleEquality, 
extract_by_obid, 
isectElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
exceptionSqequal, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
sqequalAxiom
Latex:
\mforall{}[a,B:Top].    (let  x  \mleftarrow{}{}  inr  a    in  B[x]  \msim{}  let  x  \mleftarrow{}{}  a  in  B[inr  x  ])
Date html generated:
2017_04_14-AM-07_35_29
Last ObjectModification:
2017_02_27-PM-03_08_21
Theory : fun_1
Home
Index