Nuprl Lemma : my_tidentity_wf
∀[A:Type]. (Id{A} ∈ A ⟶ A)
Proof
Definitions occuring in Statement : 
tidentity: Id{T}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
tidentity: Id{T}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
identity_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :universeIsType, 
universeEquality
Latex:
\mforall{}[A:Type].  (Id\{A\}  \mmember{}  A  {}\mrightarrow{}  A)
Date html generated:
2019_06_20-PM-00_26_14
Last ObjectModification:
2018_09_26-AM-11_48_20
Theory : fun_1
Home
Index