Nuprl Lemma : sq_stable__assoc

[T:Type]. ∀[op:T ⟶ T ⟶ T].  SqStable(Assoc(T;op))


Proof




Definitions occuring in Statement :  assoc: Assoc(T;op) sq_stable: SqStable(P) uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  assoc: Assoc(T;op) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] infix_ap: y so_apply: x[s] implies:  Q sq_stable: SqStable(P) prop:
Lemmas referenced :  sq_stable__uall uall_wf equal_wf sq_stable__equal squash_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis independent_functionElimination because_Cache dependent_functionElimination axiomEquality isect_memberEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[op:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T].    SqStable(Assoc(T;op))



Date html generated: 2019_06_20-PM-00_27_08
Last ObjectModification: 2018_08_07-PM-01_33_41

Theory : fun_1


Home Index