Nuprl Lemma : sq_stable__inject

[A,B:Type]. ∀[f:A ⟶ B].  SqStable(Inj(A;B;f))


Proof




Definitions occuring in Statement :  inject: Inj(A;B;f) sq_stable: SqStable(P) uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  inject: Inj(A;B;f) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s] all: x:A. B[x] sq_stable: SqStable(P)
Lemmas referenced :  sq_stable__all all_wf equal_wf sq_stable__equal squash_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality functionEquality applyEquality hypothesis independent_functionElimination lambdaFormation because_Cache dependent_functionElimination axiomEquality Error :functionIsType,  Error :universeIsType,  isect_memberEquality Error :inhabitedIsType,  universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].    SqStable(Inj(A;B;f))



Date html generated: 2019_06_20-PM-00_26_23
Last ObjectModification: 2018_09_26-PM-00_06_24

Theory : fun_1


Home Index