Nuprl Lemma : surject_wf
∀[A,B:Type]. ∀[f:A ⟶ B].  (Surj(A;B;f) ∈ ℙ)
Proof
Definitions occuring in Statement : 
surject: Surj(A;B;f)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
surject: Surj(A;B;f)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
exists_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :functionIsType, 
Error :universeIsType, 
isect_memberEquality, 
functionEquality, 
Error :inhabitedIsType, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].    (Surj(A;B;f)  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-PM-00_26_24
Last ObjectModification:
2018_09_26-AM-11_48_21
Theory : fun_1
Home
Index