Nuprl Lemma : surject_wf

[A,B:Type]. ∀[f:A ⟶ B].  (Surj(A;B;f) ∈ ℙ)


Proof




Definitions occuring in Statement :  surject: Surj(A;B;f) uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T surject: Surj(A;B;f) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  all_wf exists_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry Error :functionIsType,  Error :universeIsType,  isect_memberEquality functionEquality Error :inhabitedIsType,  because_Cache universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].    (Surj(A;B;f)  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-00_26_24
Last ObjectModification: 2018_09_26-AM-11_48_21

Theory : fun_1


Home Index