Nuprl Lemma : test-spread-normalize
∀[a,B:Top].  (let x,y = a in if a is a pair then B[a] otherwise 2 ~ let x,y = a in B[<x, y>])
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
ispair: if z is a pair then a otherwise b
, 
spread: spread def, 
pair: <a, b>
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
, 
prop: ℙ
Lemmas referenced : 
top_wf, 
equal_wf, 
has-value_wf_base, 
is-exception_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
sqequalAxiom, 
extract_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
voidElimination, 
voidEquality, 
lambdaFormation, 
sqequalSqle, 
divergentSqle, 
callbyvalueSpread, 
productEquality, 
productElimination, 
sqleReflexivity, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
spreadExceptionCases, 
axiomSqleEquality, 
exceptionSqequal, 
baseApply, 
closedConclusion, 
baseClosed
Latex:
\mforall{}[a,B:Top].    (let  x,y  =  a  in  if  a  is  a  pair  then  B[a]  otherwise  2  \msim{}  let  x,y  =  a  in  B[<x,  y>])
Date html generated:
2017_04_14-AM-07_35_21
Last ObjectModification:
2017_02_27-PM-03_08_12
Theory : fun_1
Home
Index