Nuprl Lemma : comb_for_le_wf
λi,j,z. (i ≤ j) ∈ ℤ ⟶ ℤ ⟶ (↓True) ⟶ ℙ
Proof
Definitions occuring in Statement : 
prop: ℙ
, 
le: A ≤ B
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
le_wf, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
intEquality
Latex:
\mlambda{}i,j,z.  (i  \mleq{}  j)  \mmember{}  \mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbP{}
Date html generated:
2016_05_13-PM-04_01_50
Last ObjectModification:
2015_12_26-AM-10_56_57
Theory : int_1
Home
Index