Nuprl Lemma : complete-nat-induction-ext
∀[P:ℕ ⟶ ℙ]. ((∀n:ℕ. ((∀m:ℕn. P[m]) 
⇒ P[n])) 
⇒ (∀n:ℕ. P[n]))
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
complete-nat-induction, 
member: t ∈ T
, 
so_apply: x[s1;s2]
, 
natrec: natrec, 
genrec: genrec
Lemmas referenced : 
complete-nat-induction
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}n:\mBbbN{}.  ((\mforall{}m:\mBbbN{}n.  P[m])  {}\mRightarrow{}  P[n]))  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  P[n]))
Date html generated:
2019_06_20-PM-01_04_59
Last ObjectModification:
2019_06_20-PM-01_02_13
Theory : int_1
Home
Index