Nuprl Lemma : complete-nat-induction-ext

[P:ℕ ⟶ ℙ]. ((∀n:ℕ((∀m:ℕn. P[m])  P[n]))  (∀n:ℕP[n]))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  complete-nat-induction member: t ∈ T so_apply: x[s1;s2] natrec: natrec genrec: genrec
Lemmas referenced :  complete-nat-induction
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
\mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}n:\mBbbN{}.  ((\mforall{}m:\mBbbN{}n.  P[m])  {}\mRightarrow{}  P[n]))  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  P[n]))



Date html generated: 2019_06_20-PM-01_04_59
Last ObjectModification: 2019_06_20-PM-01_02_13

Theory : int_1


Home Index