Nuprl Lemma : decidable__equal_int_seg

i,j:ℤ. ∀x,y:{i..j-}.  Dec(x y ∈ {i..j-})


Proof




Definitions occuring in Statement :  int_seg: {i..j-} decidable: Dec(P) all: x:A. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  decidable: Dec(P) all: x:A. B[x] member: t ∈ T int_seg: {i..j-} or: P ∨ Q lelt: i ≤ j < k and: P ∧ Q uall: [x:A]. B[x] prop: guard: {T} not: ¬A implies:  Q squash: T false: False
Lemmas referenced :  int_seg_wf equal_wf not_wf lelt_wf decidable__int_equal
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis unionElimination inlFormation dependent_set_memberEquality productElimination isectElimination inrFormation applyEquality lambdaEquality imageMemberEquality baseClosed equalityUniverse levelHypothesis introduction independent_functionElimination voidElimination intEquality

Latex:
\mforall{}i,j:\mBbbZ{}.  \mforall{}x,y:\{i..j\msupminus{}\}.    Dec(x  =  y)



Date html generated: 2016_05_13-PM-04_02_05
Last ObjectModification: 2016_01_14-PM-07_24_38

Theory : int_1


Home Index