Nuprl Lemma : genrec-ap-unroll

[g,x:Top].  (letrec rec(n)=g[n;rec] in rec(x) g[x;λx.letrec rec(n)=g[n;rec] in rec(x)])


Proof




Definitions occuring in Statement :  genrec-ap: genrec-ap uall: [x:A]. B[x] top: Top so_apply: x[s1;s2] lambda: λx.A[x] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T genrec-ap: genrec-ap
Lemmas referenced :  istype-top
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule hypothesis axiomSqEquality Error :inhabitedIsType,  hypothesisEquality sqequalHypSubstitution Error :isect_memberEquality_alt,  isectElimination thin Error :isectIsTypeImplies,  extract_by_obid

Latex:
\mforall{}[g,x:Top].    (letrec  rec(n)=g[n;rec]  in  rec(x)  \msim{}  g[x;\mlambda{}x.letrec  rec(n)=g[n;rec]  in  rec(x)])



Date html generated: 2019_06_20-AM-11_33_36
Last ObjectModification: 2019_04_01-PM-02_37_42

Theory : int_1


Home Index