Nuprl Lemma : genrec-ap-unroll
∀[g,x:Top].  (letrec rec(n)=g[n;rec] in rec(x) ~ g[x;λx.letrec rec(n)=g[n;rec] in rec(x)])
Proof
Definitions occuring in Statement : 
genrec-ap: genrec-ap, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
lambda: λx.A[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
genrec-ap: genrec-ap
Lemmas referenced : 
istype-top
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
hypothesis, 
axiomSqEquality, 
Error :inhabitedIsType, 
hypothesisEquality, 
sqequalHypSubstitution, 
Error :isect_memberEquality_alt, 
isectElimination, 
thin, 
Error :isectIsTypeImplies, 
extract_by_obid
Latex:
\mforall{}[g,x:Top].    (letrec  rec(n)=g[n;rec]  in  rec(x)  \msim{}  g[x;\mlambda{}x.letrec  rec(n)=g[n;rec]  in  rec(x)])
Date html generated:
2019_06_20-AM-11_33_36
Last ObjectModification:
2019_04_01-PM-02_37_42
Theory : int_1
Home
Index