Nuprl Lemma : isint-int

[z:ℤ]. ∀[a,b:Top].  (if is an integer then else a)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] top: Top isint: isint def int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis sqequalAxiom lemma_by_obid sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache intEquality isintReduceTrue

Latex:
\mforall{}[z:\mBbbZ{}].  \mforall{}[a,b:Top].    (if  z  is  an  integer  then  a  else  b  \msim{}  a)



Date html generated: 2016_05_13-PM-04_03_21
Last ObjectModification: 2015_12_26-AM-10_56_01

Theory : int_1


Home Index