Nuprl Lemma : isint-int
∀[z:ℤ]. ∀[a,b:Top]. (if z is an integer then a else b ~ a)
Proof
Definitions occuring in Statement :
uall: ∀[x:A]. B[x]
,
top: Top
,
isint: isint def,
int: ℤ
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Lemmas referenced :
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
hypothesis,
sqequalAxiom,
lemma_by_obid,
sqequalRule,
sqequalHypSubstitution,
isect_memberEquality,
isectElimination,
thin,
hypothesisEquality,
because_Cache,
intEquality,
isintReduceTrue
Latex:
\mforall{}[z:\mBbbZ{}]. \mforall{}[a,b:Top]. (if z is an integer then a else b \msim{} a)
Date html generated:
2016_05_13-PM-04_03_21
Last ObjectModification:
2015_12_26-AM-10_56_01
Theory : int_1
Home
Index