Nuprl Lemma : isint-int
∀[z:ℤ]. ∀[a,b:Top].  (if z is an integer then a else b ~ a)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
isint: isint def, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
sqequalAxiom, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
intEquality, 
isintReduceTrue
Latex:
\mforall{}[z:\mBbbZ{}].  \mforall{}[a,b:Top].    (if  z  is  an  integer  then  a  else  b  \msim{}  a)
Date html generated:
2016_05_13-PM-04_03_21
Last ObjectModification:
2015_12_26-AM-10_56_01
Theory : int_1
Home
Index