Nuprl Lemma : sqequal_n-wf

[x,y:Base]. ∀[n:ℕ].  (x ~n y ∈ Type)


Proof




Definitions occuring in Statement :  nat: uall: [x:A]. B[x] member: t ∈ T base: Base universe: Type sqequal_n: ~n t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  nat_wf base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalnIntensionalEquality hypothesisEquality sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry Error :universeIsType,  extract_by_obid Error :isect_memberEquality_alt,  isectElimination thin Error :isectIsTypeImplies,  Error :inhabitedIsType

Latex:
\mforall{}[x,y:Base].  \mforall{}[n:\mBbbN{}].    (x  \msim{}n  y  \mmember{}  Type)



Date html generated: 2019_06_20-AM-11_33_43
Last ObjectModification: 2018_10_15-PM-03_58_35

Theory : int_1


Home Index