Nuprl Lemma : sqequal_n-wf
∀[x,y:Base]. ∀[n:ℕ].  (x ~n y ∈ Type)
Proof
Definitions occuring in Statement : 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
base: Base
, 
universe: Type
, 
sqequal_n: s ~n t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
nat_wf, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalnIntensionalEquality, 
hypothesisEquality, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :universeIsType, 
extract_by_obid, 
Error :isect_memberEquality_alt, 
isectElimination, 
thin, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType
Latex:
\mforall{}[x,y:Base].  \mforall{}[n:\mBbbN{}].    (x  \msim{}n  y  \mmember{}  Type)
Date html generated:
2019_06_20-AM-11_33_43
Last ObjectModification:
2018_10_15-PM-03_58_35
Theory : int_1
Home
Index