Nuprl Lemma : stable-union_wf

[X,T:Type]. ∀[P:T ⟶ X ⟶ ℙ].  (stable-union(X;T;i,x.P[i;x]) ∈ Type)


Proof




Definitions occuring in Statement :  stable-union: stable-union(X;T;i,x.P[i; x]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T stable-union: stable-union(X;T;i,x.P[i; x]) prop: exists: x:A. B[x] so_apply: x[s1;s2]
Lemmas referenced :  not_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule setEquality hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination thin productEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry functionIsType universeIsType universeEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType instantiate

Latex:
\mforall{}[X,T:Type].  \mforall{}[P:T  {}\mrightarrow{}  X  {}\mrightarrow{}  \mBbbP{}].    (stable-union(X;T;i,x.P[i;x])  \mmember{}  Type)



Date html generated: 2020_05_19-PM-09_36_15
Last ObjectModification: 2019_10_24-AM-09_55_58

Theory : int_1


Home Index