Nuprl Lemma : stable-union_wf
∀[X,T:Type]. ∀[P:T ⟶ X ⟶ ℙ].  (stable-union(X;T;i,x.P[i;x]) ∈ Type)
Proof
Definitions occuring in Statement : 
stable-union: stable-union(X;T;i,x.P[i; x])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
stable-union: stable-union(X;T;i,x.P[i; x])
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
not_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
hypothesisEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
applyEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
universeIsType, 
universeEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate
Latex:
\mforall{}[X,T:Type].  \mforall{}[P:T  {}\mrightarrow{}  X  {}\mrightarrow{}  \mBbbP{}].    (stable-union(X;T;i,x.P[i;x])  \mmember{}  Type)
Date html generated:
2020_05_19-PM-09_36_15
Last ObjectModification:
2019_10_24-AM-09_55_58
Theory : int_1
Home
Index