Nuprl Lemma : div-cancel2

[x:ℤ]. ∀[y:ℤ-o].  ((y x) ÷ x)


Proof




Definitions occuring in Statement :  int_nzero: -o uall: [x:A]. B[x] divide: n ÷ m multiply: m int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_nzero: -o top: Top
Lemmas referenced :  mul-commutes div-cancel int_nzero_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality isect_memberEquality voidElimination voidEquality hypothesis sqequalAxiom sqequalRule because_Cache intEquality

Latex:
\mforall{}[x:\mBbbZ{}].  \mforall{}[y:\mBbbZ{}\msupminus{}\msupzero{}].    ((y  *  x)  \mdiv{}  y  \msim{}  x)



Date html generated: 2016_05_14-AM-07_24_14
Last ObjectModification: 2015_12_26-PM-01_29_35

Theory : int_2


Home Index