Nuprl Lemma : div-cancel2
∀[x:ℤ]. ∀[y:ℤ-o].  ((y * x) ÷ y ~ x)
Proof
Definitions occuring in Statement : 
int_nzero: ℤ-o
, 
uall: ∀[x:A]. B[x]
, 
divide: n ÷ m
, 
multiply: n * m
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_nzero: ℤ-o
, 
top: Top
Lemmas referenced : 
mul-commutes, 
div-cancel, 
int_nzero_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
sqequalAxiom, 
sqequalRule, 
because_Cache, 
intEquality
Latex:
\mforall{}[x:\mBbbZ{}].  \mforall{}[y:\mBbbZ{}\msupminus{}\msupzero{}].    ((y  *  x)  \mdiv{}  y  \msim{}  x)
Date html generated:
2016_05_14-AM-07_24_14
Last ObjectModification:
2015_12_26-PM-01_29_35
Theory : int_2
Home
Index