Nuprl Lemma : div_nrel_wf
∀[a:ℕ]. ∀[n:ℕ+]. ∀[q:ℕ].  (Div(a;n;q) ∈ ℙ)
Proof
Definitions occuring in Statement : 
div_nrel: Div(a;n;q)
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
div_nrel: Div(a;n;q)
, 
nat_plus: ℕ+
, 
nat: ℕ
Lemmas referenced : 
lelt_wf, 
nat_wf, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
multiplyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
addEquality, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
isect_memberEquality, 
Error :universeIsType
Latex:
\mforall{}[a:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[q:\mBbbN{}].    (Div(a;n;q)  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-PM-01_14_15
Last ObjectModification:
2018_09_26-PM-02_32_21
Theory : int_2
Home
Index