Nuprl Lemma : div_nrel_wf

[a:ℕ]. ∀[n:ℕ+]. ∀[q:ℕ].  (Div(a;n;q) ∈ ℙ)


Proof




Definitions occuring in Statement :  div_nrel: Div(a;n;q) nat_plus: + nat: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T div_nrel: Div(a;n;q) nat_plus: + nat:
Lemmas referenced :  lelt_wf nat_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin multiplyEquality setElimination rename hypothesisEquality hypothesis because_Cache addEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  isect_memberEquality Error :universeIsType

Latex:
\mforall{}[a:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[q:\mBbbN{}].    (Div(a;n;q)  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-01_14_15
Last ObjectModification: 2018_09_26-PM-02_32_21

Theory : int_2


Home Index