Nuprl Lemma : int-prod-unroll-hi

[n:ℕ]. ∀[f:Top].  (f[x] x < n) if (n =z 0) then else Π(f[x] x < 1) f[n 1] fi )


Proof




Definitions occuring in Statement :  int-prod: Π(f[x] x < k) nat: ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] top: Top so_apply: x[s] multiply: m subtract: m natural_number: $n sqequal: t
Definitions unfolded in proof :  top: Top int-prod: Π(f[x] x < k) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  nat_wf top_wf primrec-unroll
Rules used in proof :  hypothesisEquality sqequalAxiom hypothesis voidEquality voidElimination isect_memberEquality because_Cache thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:Top].    (\mPi{}(f[x]  |  x  <  n)  \msim{}  if  (n  =\msubz{}  0)  then  1  else  \mPi{}(f[x]  |  x  <  n  -  1)  *  f[n  -  1]  fi  )



Date html generated: 2018_05_21-PM-00_28_51
Last ObjectModification: 2017_12_10-PM-10_13_43

Theory : int_2


Home Index