Nuprl Lemma : int-prod_wf

[n:ℕ]. ∀[f:ℕn ⟶ ℤ].  (f[x] x < n) ∈ ℤ)


Proof




Definitions occuring in Statement :  int-prod: Π(f[x] x < k) int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int-prod: Π(f[x] x < k) so_apply: x[s] nat:
Lemmas referenced :  primrec_wf int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesisEquality natural_numberEquality lambdaEquality multiplyEquality applyEquality setElimination rename hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality because_Cache

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].    (\mPi{}(f[x]  |  x  <  n)  \mmember{}  \mBbbZ{})



Date html generated: 2016_05_14-AM-07_33_46
Last ObjectModification: 2015_12_26-PM-01_23_46

Theory : int_2


Home Index