Nuprl Lemma : int-prod_wf
∀[n:ℕ]. ∀[f:ℕn ⟶ ℤ].  (Π(f[x] | x < n) ∈ ℤ)
Proof
Definitions occuring in Statement : 
int-prod: Π(f[x] | x < k)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int-prod: Π(f[x] | x < k)
, 
so_apply: x[s]
, 
nat: ℕ
Lemmas referenced : 
primrec_wf, 
int_seg_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
hypothesisEquality, 
natural_numberEquality, 
lambdaEquality, 
multiplyEquality, 
applyEquality, 
setElimination, 
rename, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].    (\mPi{}(f[x]  |  x  <  n)  \mmember{}  \mBbbZ{})
Date html generated:
2016_05_14-AM-07_33_46
Last ObjectModification:
2015_12_26-PM-01_23_46
Theory : int_2
Home
Index