Nuprl Lemma : int-prod_wf_nat

[n:ℕ]. ∀[f:ℕn ⟶ ℕ].  (f[x] x < n) ∈ ℕ)


Proof




Definitions occuring in Statement :  int-prod: Π(f[x] x < k) int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int-prod: Π(f[x] x < k) nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: so_apply: x[s] subtype_rel: A ⊆B
Lemmas referenced :  primrec_wf nat_wf false_wf le_wf mul_bounds_1a int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation lambdaFormation lambdaEquality multiplyEquality setElimination rename applyEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}].    (\mPi{}(f[x]  |  x  <  n)  \mmember{}  \mBbbN{})



Date html generated: 2016_05_14-AM-07_33_49
Last ObjectModification: 2015_12_26-PM-01_23_43

Theory : int_2


Home Index