Nuprl Lemma : int-prod_wf_nat
∀[n:ℕ]. ∀[f:ℕn ⟶ ℕ].  (Π(f[x] | x < n) ∈ ℕ)
Proof
Definitions occuring in Statement : 
int-prod: Π(f[x] | x < k)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int-prod: Π(f[x] | x < k)
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
primrec_wf, 
nat_wf, 
false_wf, 
le_wf, 
mul_bounds_1a, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
lambdaFormation, 
lambdaEquality, 
multiplyEquality, 
setElimination, 
rename, 
applyEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}].    (\mPi{}(f[x]  |  x  <  n)  \mmember{}  \mBbbN{})
Date html generated:
2016_05_14-AM-07_33_49
Last ObjectModification:
2015_12_26-PM-01_23_43
Theory : int_2
Home
Index