Nuprl Lemma : multiply_nat_plus
∀[i,j:ℕ+].  (i * j ∈ ℕ+)
Proof
Definitions occuring in Statement : 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
multiply: n * m
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
prop: ℙ
Lemmas referenced : 
mul_bounds_1b, 
less_than_wf, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_set_memberEquality, 
multiplyEquality, 
setElimination, 
rename, 
hypothesis, 
natural_numberEquality, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[i,j:\mBbbN{}\msupplus{}].    (i  *  j  \mmember{}  \mBbbN{}\msupplus{})
Date html generated:
2016_05_14-AM-07_20_47
Last ObjectModification:
2015_12_26-PM-01_31_57
Theory : int_2
Home
Index