Nuprl Lemma : append-unroll

[as,bs:Top].  (as bs if as is pair then [fst(as) ((snd(as)) bs)] otherwise if as Ax then bs otherwise ⊥)


Proof




Definitions occuring in Statement :  append: as bs cons: [a b] bottom: uall: [x:A]. B[x] top: Top pi1: fst(t) pi2: snd(t) ispair: if is pair then otherwise b isaxiom: if Ax then otherwise b sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T append: as bs list_ind: list_ind has-value: (a)↓ all: x:A. B[x] implies:  Q or: P ∨ Q cons: [a b] pi1: fst(t) pi2: snd(t) top: Top
Lemmas referenced :  top_wf is-exception_wf has-value_wf_base has-value-implies-dec-ispair-2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalSqle sqleRule thin divergentSqle callbyvalueCallbyvalue sqequalHypSubstitution hypothesis callbyvalueReduce lemma_by_obid dependent_functionElimination hypothesisEquality independent_functionElimination unionElimination sqleReflexivity isectElimination baseApply closedConclusion baseClosed lambdaFormation isect_memberEquality voidElimination voidEquality because_Cache callbyvalueExceptionCases axiomSqleEquality exceptionSqequal callbyvalueIspair ispairExceptionCases sqequalAxiom

Latex:
\mforall{}[as,bs:Top].
    (as  @  bs  \msim{}  if  as  is  a  pair  then  [fst(as)  /  ((snd(as))  @  bs)]
                          otherwise  if  as  =  Ax  then  bs  otherwise  \mbot{})



Date html generated: 2016_05_14-AM-06_30_51
Last ObjectModification: 2016_01_14-PM-08_25_20

Theory : list_0


Home Index