Nuprl Lemma : apply_alist_cons_lemma

x,v,u,eq:Top.  (apply-alist(eq;[u v];x) if eqof(eq) (fst(u)) then inl (snd(u)) else apply-alist(eq;v;x) fi )


Proof




Definitions occuring in Statement :  apply-alist: apply-alist(eq;L;x) cons: [a b] eqof: eqof(d) ifthenelse: if then else fi  top: Top pi1: fst(t) pi2: snd(t) all: x:A. B[x] apply: a inl: inl x sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T apply-alist: apply-alist(eq;L;x) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] eqof: eqof(d)
Lemmas referenced :  top_wf list_ind_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}x,v,u,eq:Top.
    (apply-alist(eq;[u  /  v];x)  \msim{}  if  eqof(eq)  (fst(u))  x
    then  inl  (snd(u))
    else  apply-alist(eq;v;x)
    fi  )



Date html generated: 2016_05_14-AM-06_47_08
Last ObjectModification: 2015_12_26-PM-00_25_03

Theory : list_0


Home Index