Nuprl Lemma : apply_alist_cons_lemma
∀x,v,u,eq:Top.  (apply-alist(eq;[u / v];x) ~ if eqof(eq) (fst(u)) x then inl (snd(u)) else apply-alist(eq;v;x) fi )
Proof
Definitions occuring in Statement : 
apply-alist: apply-alist(eq;L;x)
, 
cons: [a / b]
, 
eqof: eqof(d)
, 
ifthenelse: if b then t else f fi 
, 
top: Top
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
inl: inl x
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
apply-alist: apply-alist(eq;L;x)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
eqof: eqof(d)
Lemmas referenced : 
top_wf, 
list_ind_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}x,v,u,eq:Top.
    (apply-alist(eq;[u  /  v];x)  \msim{}  if  eqof(eq)  (fst(u))  x
    then  inl  (snd(u))
    else  apply-alist(eq;v;x)
    fi  )
Date html generated:
2016_05_14-AM-06_47_08
Last ObjectModification:
2015_12_26-PM-00_25_03
Theory : list_0
Home
Index