Nuprl Lemma : co-nil_wf

[T:Type]. (() ∈ colist(T))


Proof




Definitions occuring in Statement :  co-nil: () colist: colist(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T co-nil: () subtype_rel: A ⊆B
Lemmas referenced :  it_wf unit_subtype_colist istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid hypothesis applyEquality thin sqequalHypSubstitution isectElimination hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry instantiate universeEquality

Latex:
\mforall{}[T:Type].  (()  \mmember{}  colist(T))



Date html generated: 2019_06_20-PM-00_38_09
Last ObjectModification: 2018_12_04-PM-00_12_21

Theory : list_0


Home Index