Nuprl Lemma : comb_for_firstn_wf
λA,as,n,z. firstn(n;as) ∈ A:Type ⟶ as:(A List) ⟶ n:ℤ ⟶ (↓True) ⟶ (A List)
Proof
Definitions occuring in Statement : 
firstn: firstn(n;as)
, 
list: T List
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
firstn_wf, 
squash_wf, 
true_wf, 
istype-int, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
Error :universeIsType, 
universeEquality
Latex:
\mlambda{}A,as,n,z.  firstn(n;as)  \mmember{}  A:Type  {}\mrightarrow{}  as:(A  List)  {}\mrightarrow{}  n:\mBbbZ{}  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  (A  List)
Date html generated:
2019_06_20-PM-00_43_10
Last ObjectModification:
2018_10_01-PM-00_27_54
Theory : list_0
Home
Index