Nuprl Lemma : comb_for_firstn_wf

λA,as,n,z. firstn(n;as) ∈ A:Type ⟶ as:(A List) ⟶ n:ℤ ⟶ (↓True) ⟶ (A List)


Proof




Definitions occuring in Statement :  firstn: firstn(n;as) list: List squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] int: universe: Type
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop:
Lemmas referenced :  firstn_wf squash_wf true_wf istype-int list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaEquality_alt,  sqequalHypSubstitution imageElimination cut introduction extract_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry Error :universeIsType,  universeEquality

Latex:
\mlambda{}A,as,n,z.  firstn(n;as)  \mmember{}  A:Type  {}\mrightarrow{}  as:(A  List)  {}\mrightarrow{}  n:\mBbbZ{}  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  (A  List)



Date html generated: 2019_06_20-PM-00_43_10
Last ObjectModification: 2018_10_01-PM-00_27_54

Theory : list_0


Home Index