Nuprl Lemma : comb_for_length_wf1
λA,l,z. ||l|| ∈ A:Type ⟶ l:(A List) ⟶ (↓True) ⟶ ℤ
Proof
Definitions occuring in Statement : 
length: ||as||
, 
list: T List
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
length_wf, 
squash_wf, 
true_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
Error :universeIsType, 
universeEquality
Latex:
\mlambda{}A,l,z.  ||l||  \mmember{}  A:Type  {}\mrightarrow{}  l:(A  List)  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbZ{}
Date html generated:
2019_06_20-PM-00_39_47
Last ObjectModification:
2018_10_02-PM-05_40_39
Theory : list_0
Home
Index