Nuprl Lemma : comb_for_map_wf

λA,B,f,l,z. map(f;l) ∈ A:Type ⟶ B:Type ⟶ f:(A ⟶ B) ⟶ l:(A List) ⟶ (↓True) ⟶ (B List)


Proof




Definitions occuring in Statement :  map: map(f;as) list: List squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop:
Lemmas referenced :  map_wf squash_wf true_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaEquality_alt,  sqequalHypSubstitution imageElimination cut introduction extract_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry Error :universeIsType,  Error :functionIsType,  Error :inhabitedIsType,  universeEquality

Latex:
\mlambda{}A,B,f,l,z.  map(f;l)  \mmember{}  A:Type  {}\mrightarrow{}  B:Type  {}\mrightarrow{}  f:(A  {}\mrightarrow{}  B)  {}\mrightarrow{}  l:(A  List)  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  (B  List)



Date html generated: 2019_06_20-PM-00_39_03
Last ObjectModification: 2018_10_02-PM-05_40_40

Theory : list_0


Home Index