Nuprl Lemma : concat-cons

[l,ll:Top].  (concat([l ll]) concat(ll))


Proof




Definitions occuring in Statement :  concat: concat(ll) append: as bs cons: [a b] uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T concat: concat(ll) all: x:A. B[x] top: Top
Lemmas referenced :  reduce_cons_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis sqequalAxiom isectElimination hypothesisEquality because_Cache

Latex:
\mforall{}[l,ll:Top].    (concat([l  /  ll])  \msim{}  l  @  concat(ll))



Date html generated: 2016_05_14-AM-06_43_46
Last ObjectModification: 2015_12_26-PM-00_28_02

Theory : list_0


Home Index