Nuprl Lemma : concat-cons
∀[l,ll:Top].  (concat([l / ll]) ~ l @ concat(ll))
Proof
Definitions occuring in Statement : 
concat: concat(ll)
, 
append: as @ bs
, 
cons: [a / b]
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
concat: concat(ll)
, 
all: ∀x:A. B[x]
, 
top: Top
Lemmas referenced : 
reduce_cons_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
sqequalAxiom, 
isectElimination, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[l,ll:Top].    (concat([l  /  ll])  \msim{}  l  @  concat(ll))
Date html generated:
2016_05_14-AM-06_43_46
Last ObjectModification:
2015_12_26-PM-00_28_02
Theory : list_0
Home
Index