Nuprl Lemma : concat-unroll

a:Top. (concat(a) if is pair then (fst(a)) concat(snd(a)) otherwise if Ax then [] otherwise ⊥)


Proof




Definitions occuring in Statement :  concat: concat(ll) append: as bs nil: [] bottom: top: Top pi1: fst(t) pi2: snd(t) ispair: if is pair then otherwise b isaxiom: if Ax then otherwise b all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] concat: concat(ll) reduce: reduce(f;k;as) list_ind: list_ind has-value: (a)↓ member: t ∈ T implies:  Q or: P ∨ Q pi1: fst(t) pi2: snd(t) top: Top uall: [x:A]. B[x]
Lemmas referenced :  is-exception_wf has-value_wf_base top_wf has-value-implies-dec-ispair-2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule sqequalSqle cut sqleRule thin divergentSqle callbyvalueCallbyvalue sqequalHypSubstitution hypothesis callbyvalueReduce lemma_by_obid dependent_functionElimination hypothesisEquality independent_functionElimination unionElimination sqleReflexivity isect_memberEquality voidElimination voidEquality because_Cache introduction callbyvalueExceptionCases axiomSqleEquality exceptionSqequal baseApply closedConclusion baseClosed isectElimination callbyvalueIspair ispairExceptionCases

Latex:
\mforall{}a:Top
    (concat(a)  \msim{}  if  a  is  a  pair  then  (fst(a))  @  concat(snd(a))
                              otherwise  if  a  =  Ax  then  []  otherwise  \mbot{})



Date html generated: 2016_05_14-AM-06_31_57
Last ObjectModification: 2016_01_14-PM-08_24_01

Theory : list_0


Home Index