Nuprl Lemma : concat_conv_single_nil_lemma

concat([[]]) []


Proof




Definitions occuring in Statement :  concat: concat(ll) cons: [a b] nil: [] sqequal: t
Definitions unfolded in proof :  concat: concat(ll) all: x:A. B[x] member: t ∈ T top: Top append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  reduce_cons_lemma list_ind_nil_lemma reduce_nil_lemma
Rules used in proof :  sqequalSubstitution sqequalRule sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis

Latex:
concat([[]])  \msim{}  []



Date html generated: 2016_05_14-AM-06_31_55
Last ObjectModification: 2015_12_26-PM-00_37_59

Theory : list_0


Home Index