Nuprl Lemma : concat_conv_single_nil_lemma
concat([[]]) ~ []
Proof
Definitions occuring in Statement :
concat: concat(ll)
,
cons: [a / b]
,
nil: []
,
sqequal: s ~ t
Definitions unfolded in proof :
concat: concat(ll)
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
top: Top
,
append: as @ bs
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
so_apply: x[s1;s2;s3]
Lemmas referenced :
reduce_cons_lemma,
list_ind_nil_lemma,
reduce_nil_lemma
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
cut,
lemma_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
isect_memberEquality,
voidElimination,
voidEquality,
hypothesis
Latex:
concat([[]]) \msim{} []
Date html generated:
2016_05_14-AM-06_31_55
Last ObjectModification:
2015_12_26-PM-00_37_59
Theory : list_0
Home
Index