Nuprl Lemma : insert_int_nil_lemma

a:Top. (insert-int(a;[]) [a])


Proof




Definitions occuring in Statement :  insert-int: insert-int(x;l) cons: [a b] nil: [] top: Top all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T insert-int: insert-int(x;l) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3]
Lemmas referenced :  top_wf list_ind_nil_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}a:Top.  (insert-int(a;[])  \msim{}  [a])



Date html generated: 2017_09_29-PM-05_48_23
Last ObjectModification: 2017_05_03-PM-03_08_36

Theory : list_0


Home Index