Nuprl Lemma : l_ind_cons_lemma

A,x,b,a:Top.  (l-ind([a b];x;h,t,r.A[h;t;r]) A[a;b;l-ind(b;x;h,t,r.A[h;t;r])])


Proof




Definitions occuring in Statement :  l-ind: l-ind(L;nilcase;h,t,r.F[h; t; r]) cons: [a b] top: Top so_apply: x[s1;s2;s3] all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T l-ind: l-ind(L;nilcase;h,t,r.F[h; t; r]) cons: [a b]
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule

Latex:
\mforall{}A,x,b,a:Top.    (l-ind([a  /  b];x;h,t,r.A[h;t;r])  \msim{}  A[a;b;l-ind(b;x;h,t,r.A[h;t;r])])



Date html generated: 2016_05_14-AM-06_26_53
Last ObjectModification: 2015_12_26-PM-00_41_37

Theory : list_0


Home Index