Nuprl Lemma : l_ind_cons_lemma
∀A,x,b,a:Top.  (l-ind([a / b];x;h,t,r.A[h;t;r]) ~ A[a;b;l-ind(b;x;h,t,r.A[h;t;r])])
Proof
Definitions occuring in Statement : 
l-ind: l-ind(L;nilcase;h,t,r.F[h; t; r])
, 
cons: [a / b]
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
all: ∀x:A. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
l-ind: l-ind(L;nilcase;h,t,r.F[h; t; r])
, 
cons: [a / b]
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule
Latex:
\mforall{}A,x,b,a:Top.    (l-ind([a  /  b];x;h,t,r.A[h;t;r])  \msim{}  A[a;b;l-ind(b;x;h,t,r.A[h;t;r])])
Date html generated:
2016_05_14-AM-06_26_53
Last ObjectModification:
2015_12_26-PM-00_41_37
Theory : list_0
Home
Index