Nuprl Lemma : length_cons

[A:Type]. ∀[a:A]. ∀[as:A List].  (||[a as]|| (||as|| 1) ∈ ℤ)


Proof




Definitions occuring in Statement :  length: ||as|| cons: [a b] list: List uall: [x:A]. B[x] add: m natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] top: Top
Lemmas referenced :  length_of_cons_lemma length_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis addEquality isectElimination hypothesisEquality natural_numberEquality axiomEquality because_Cache universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[a:A].  \mforall{}[as:A  List].    (||[a  /  as]||  =  (||as||  +  1))



Date html generated: 2016_05_14-AM-06_33_37
Last ObjectModification: 2015_12_26-PM-00_36_39

Theory : list_0


Home Index