Nuprl Lemma : length_cons
∀[A:Type]. ∀[a:A]. ∀[as:A List].  (||[a / as]|| = (||as|| + 1) ∈ ℤ)
Proof
Definitions occuring in Statement : 
length: ||as||
, 
cons: [a / b]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
top: Top
Lemmas referenced : 
length_of_cons_lemma, 
length_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
addEquality, 
isectElimination, 
hypothesisEquality, 
natural_numberEquality, 
axiomEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[a:A].  \mforall{}[as:A  List].    (||[a  /  as]||  =  (||as||  +  1))
Date html generated:
2016_05_14-AM-06_33_37
Last ObjectModification:
2015_12_26-PM-00_36_39
Theory : list_0
Home
Index