Nuprl Lemma : length_firstn_eq

[A:Type]. ∀[as:A List]. ∀[n:{0...||as||}].  (||firstn(n;as)|| n ∈ ℤ)


Proof




Definitions occuring in Statement :  firstn: firstn(n;as) length: ||as|| list: List int_iseg: {i...j} uall: [x:A]. B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_iseg: {i...j}
Lemmas referenced :  length_firstn int_iseg_wf length_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename natural_numberEquality isect_memberEquality axiomEquality because_Cache universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[as:A  List].  \mforall{}[n:\{0...||as||\}].    (||firstn(n;as)||  =  n)



Date html generated: 2016_05_14-AM-06_48_23
Last ObjectModification: 2015_12_26-PM-00_24_23

Theory : list_0


Home Index