Nuprl Lemma : length_firstn_eq
∀[A:Type]. ∀[as:A List]. ∀[n:{0...||as||}].  (||firstn(n;as)|| = n ∈ ℤ)
Proof
Definitions occuring in Statement : 
firstn: firstn(n;as)
, 
length: ||as||
, 
list: T List
, 
int_iseg: {i...j}
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_iseg: {i...j}
Lemmas referenced : 
length_firstn, 
int_iseg_wf, 
length_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
natural_numberEquality, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[as:A  List].  \mforall{}[n:\{0...||as||\}].    (||firstn(n;as)||  =  n)
Date html generated:
2016_05_14-AM-06_48_23
Last ObjectModification:
2015_12_26-PM-00_24_23
Theory : list_0
Home
Index