Nuprl Lemma : length_wf_nat
∀[A:Type]. ∀[L:A List]. (||L|| ∈ ℕ)
Proof
Definitions occuring in Statement :
length: ||as||
,
list: T List
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
nat: ℕ
,
ge: i ≥ j
,
prop: ℙ
Lemmas referenced :
length_wf,
non_neg_length,
le_wf,
list_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
dependent_set_memberEquality,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
natural_numberEquality,
sqequalRule,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
because_Cache,
universeEquality
Latex:
\mforall{}[A:Type]. \mforall{}[L:A List]. (||L|| \mmember{} \mBbbN{})
Date html generated:
2016_05_14-AM-06_33_04
Last ObjectModification:
2015_12_26-PM-00_37_52
Theory : list_0
Home
Index