Nuprl Lemma : list_acc_cons_red_lemma
∀v,u,b,f:Top. (list-accum(t,a,h.f[t;a;h];b;[u / v]) ~ list-accum(t,a,h.f[t;a;h];f[v;b;u];v))
Proof
Definitions occuring in Statement :
list-accum: list-accum(t,a,h.f[t; a; h];b;L)
,
cons: [a / b]
,
top: Top
,
so_apply: x[s1;s2;s3]
,
all: ∀x:A. B[x]
,
sqequal: s ~ t
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
list-accum: list-accum(t,a,h.f[t; a; h];b;L)
,
cons: [a / b]
,
so_lambda: λ2x y.t[x; y]
,
top: Top
,
so_apply: x[s1;s2]
Lemmas referenced :
top_wf,
spread_cons_lemma
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
hypothesis,
introduction,
extract_by_obid,
sqequalRule,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
isect_memberEquality,
voidElimination,
voidEquality
Latex:
\mforall{}v,u,b,f:Top. (list-accum(t,a,h.f[t;a;h];b;[u / v]) \msim{} list-accum(t,a,h.f[t;a;h];f[v;b;u];v))
Date html generated:
2018_05_21-PM-00_19_13
Last ObjectModification:
2018_05_19-AM-06_59_10
Theory : list_0
Home
Index